
Mihaela Elena Breabăn

© FII 2021-2022

Databases
CREATE BITMAP INDEX idx ON

(topic);

SELECT * FROM Databases WHERE topic = ‘ INDEXES’;

Relational Database Design

Methodology

2

1. Requirements analysis

Requirements specs

2. Conceptual Modeling

4. Physical modeling

Tuning

E/R diagrams (UML)

3. Logical modeling

Normalisation

Relational schema

independent of

physical

considerations

tailored to a specific

DBMS

Outline

 Physical storage and access

 Indexing - motivation

 Ordered structures

 Sequential indexes

 B+-Trees

 Multi-key indexes

 Hashing

 Static Hashing

 Dynamic Hashing

 Multi-key access and Bitmap indexes

 Indexes in SQL

 Indexes in Oracle

3

Physical storage and access

4

 The time to bring a data block into memory is determined by:

 seek time (time to move the drive head to the track)

 rotational latency (time for the data/disk to rotate under the drive head)

 transfer time (time to transfer the data to main memory)

sID sName grade

20 Ioana 9.5

40 Andrei 8.66

10 Tudor 8.55

30 Maria 8.33

70 Alex 9.33

track

head

track

disks

Indexing – Motivation (1)

 Usually, the DBMS spends most of the time solving queries (searching)

SELECT * FROM Student

WHERE sID=40;

How can we retrieve the desired data?

sID sName grade

20 Ioana 9.5

40 Andrei 8.66

10 Tudor 8.55

30 Maria 8.33

70 Alex 9.33

sID sName grade

10 Tudor 8.55

20 Ioana 9.5

30 Maria 8.33

40 Andrei 8.66

70 Alex 9.33

a) Random ordering b) Ascending ordering of sID

5

Search key

Sort key

Indexing – Motivation (2)

 When data is sorted based on the search key, binary search is possible

 Time complexity: O(log2(N))

(log2(100 000)=17)

SELECT * FROM Student

WHERE sName=‘Ioana’;

How can we solve this problem efficiently (the data is not sorted based on sName)?

Solution: build an index file

6

Basic concepts in indexing

 Data file – the sequence of blocks containing the records in a table

 Search key – an attribute (or a set of attributes) used to search records in a data file

 Sort key - an attribute that decides the order of the records in a data file

 Index file – is associated to a search key for a data file and contains index records of

the form

 Dense index – stores one entry for each existing value of the search key

 Sparse index – stores fewer entries

Observations:

 A data file can have associated more than 1 index file

 Index files are usually smaller than the data file

search_key value pointer

7

 HOW many indexes in practice ?

 WHEN should we (NOT) create indexes ?

 HOW should we index (in terms of data structures)?

 Considerations:

 Necessary storing space

 Access time

 Insertion time

 Deletion time

 The types of supported queries

8

Questions…

Index types

 Ordered indexes: the values of the search key are ordered

 Sequential indexes

 B+-trees

 Hash indexes: the values of the search key are uniformly distributed in buckets based on a hash

function

 Bucket: a storage unit containing one or more records

 Bitmap indexes: associated to discrete attributes, encode its distribution as a binary matrix

9

Ordered indexes:

sequential files

10

Sequential indexes

 Index entries are sorted based on the search key

 Ex: the catalogue with authors in a library

 Primary index: the search key is also a sort key for the data file

 The search key is usually the primary key of the table – but not mandatory

 A table may have at most one primary index

 Secondary index (nonclustering/nonclustered): the search key gives an ordering different

than that of the data file

11

Dense indexes

 Dense index: there exist entries for each value of the search key existent in the data file

 If the index is primary, it maintains a single pointer for the entries having identical values in the data

file (a pointer to the first entry in the series)

 If the index is secondary, several entries may be necessary for a value of the search key.

12

Primary dense sequential index: the search key is the

same as the sort key of the data file

Sparse index

 Sparse indexes do NOT contain entries for all the values of the search key

 Applicable only for records which are sequentially ordered based on the search key (when the search key is the same as the

sort key)

 Time-space trade-off

 Usually an entry in the index points to a block in a data file

 To locate a record having value k for the search key:

 Find the index entry having the largest value of the search smaller than k

 Look sequentially in the data file starting with the record indicated by the index entry

13

Primary sparse sequential index: the index search key

must be identical with the data file sort key

Multi-level indexes

 Multi-level index: an index associated to another index

 Necessary when the primary index does not fit into the main memory

 As solution: the primary index is stored on the disk as a data file and a sparse index is attached to

it

 External index – a sparse index over the primary index

 Internal index – the primary index

 When the external index is still too large to fit into the memory, another sparser index may be built

over it, etc…

 Indexes on all the levels must be updated when the data file is modified by DML operations

14

Multi-level indexes

Example

15

Sparse index Dense index Data file

Secondary index

 Query: Find the students living in Cluj (the data file is sorted based on students’ names)

 Solution: build a secondary index (dense!)

 To implement efficiently the one-to-many relation between the index and the data file,

buckets of pointers may be used

16

Updating sequential indexes

Deletions in data

1. Start by retrieving the record to be deleted using the index

2. Delete the record in the data file;

3. If the deleted record is the only one corresponding to a given search key k, this is also deleted from

the index:

 Delete from dense indexes: similar to deleting from the data file

 Delete from sparse indexes:

 If there exists an entry k in the index, this is replaced by the next value of the search key (with respect to the ordering

of the search key)

 If the next value of the search key already exists in the index, k is simply deleted.

17

Updating sequential indexes

Insertions

1. Insert the tuple in the data file

2. Search the index for the value of the search key corresponding to the inserted tuple and update the

index as follows:

 Dense indexes: if the value does not appear in the index, it will be inserted; otherwise, if the index is secondary, add

only the reference/pointer

 Sparse indexes: if the index maintains an entry for each block in the data file, only when a new block is created in the

data file, a new entry will be added in the index, pointing to the first record in the block

 Insertions in the data file and in the index file may necessitate the creation of excess blocks -> the

sequential structure may degenerate

 Insertion and deletion in multi-level indexes are simple extensions of the discussed cases

18

Ordered indexes:

B+-trees

19

B+-tree based indexes

Motivation

 Sequential structures degrade after many DML operations

 Reconstructing the indexes is necessary but costly

 B+-tree

 Speeds up retrieval and eliminates the constant need for reorganization

 Is used extensively for data indexing in relational DBMSs

20

The structure of a B+-tree (1)

 A balanced tree such that all the leaves are on the same level

 Structure of a typical node:

 Ki – values of the search key

 Pi pointers to

 Internal descending nodes

 (If in a leaf node) to single records in the data file or buckets of records

 The tree is characterized by a constant m specifying the maximum number of values in a node (the

maximum number of pointers or descending nodes is m+1)

 Usually m is computed such that the dimension of a node is equal to that of a block

 The values of the search key are ordered within a node

K1 < K2 < K3 < . . . < Km

21

The structure of a B+-tree (2)

 For a node with m+1 pointers:

 All the values of the search key in the subtree pointed by P1 are smaller than K1

 For Pi, 2  i  m, all values of the search key in the subtree to which it points are larger than or equal to Ki–1

and smaller than Ki

 All values of the search key in the subtree pointed by Pm+1 are larger than or equal to Km

22

Rules for filling in the nodes

 Nodes are not fully filled in:

 The root node has at least 2 and at most m + 1 pointers/descendents (correspondingly, at least 1 and at most m

values, ordered ascending)

 Every node on an internal level has at least ⌈(m+1)/2⌉ and at most m + 1 pointers/descendents (correspondingly, at

least ⌊m/2⌋ and at most m values, ordered ascending)

 Every leaf node has at least ⌈m/2⌉ and at most m values; all the pointers point to the data file, excepting the last

pointer which points to the next leaf node (with larger values).

23

B+-tree

Example

 1 memory block = 1024 bytes

 Search key = a string of maximum 20 characters (1 character=byte)

 1pointer = 8 bytes

 What is the tree constant, i.e. the maximum number of entries in a node?

 The largest value m satisfying 20m + 8(m + 1) <= 1024.

 m=36

 Root: at least one, at most 36 values

 Internal node: at least19, at most 37 pointers

 Leaf node: at least18, at most 36 values = pointers to the data file

24

B+-trees

Observations

 Because nodes are connected by pointers, blocks logically close are not necessarily physically

close

 All the levels excepting the leaf level form a hierarchy of sparse indexes over the leaf level

 The last level = a sequential dense index over the data file

 The B+-tree contains a relatively small number of levels

 At most log(m+1)/2(K) for K values of the search key

 Level two: at least 2 nodes

 Level 3: 2* (m+1)/2 nodes

 Level 4: at least 2* (m+1)/2 * (m+1)/2

 etc…

 Insertions and deletions are efficiently processed: restructuring the index requires logarithmic

time

25

Queries on B+- trees

Algorithm

Goal: determine all the records in the data file having value k for the search key

1. N=root

2. Repeat

• Look in N for the smallest value of the search key which is largest than k

• If such a value Ki exists, than N = Pi

• else N = Pn (k  Kn–1)

Until N is a leaf

3. If there exists Ki = k in the leaf, pointer Pi points to the required record

4. Else, there is no record with search key = k

26

Queries

27

The search key – stores all the odd numbers between 1-19

Draw possible tree structures for m=3 and perform the query for value 15

Queries on B+-trees

Quiz

28

 Given m=100 (each node stored on a block)

 For 1 million values of the search key, how many nodes (blocks on the disk)are accessed when searching for a

specific value in a B+-tree? (4)

 What if a sequential index is used?

 20 – if one block stores one (key_value, pointer) entry

 14 – if one block stores 100 (key_value, pointer) pairs

Updates in a B+-tree

Insertion

29

1. Find the leaf node that should contain the value to be inserted

2. If the value exists in the leaf node:

1. Add the record in the data file

2. Add a pointer in the bucket for that index entry

3. If the value does not exist

1. Add the record in the data file

2. If there is room in the leaf node in the index, insert the pair (pointer,key_value)

3. Else divide the leaf node

Updates in a B+-tree

Insertion: node division

30

 Division of the leaf node

1. Take the m=1 ordered pairs (including the one to be inserted). Keep the first (m+1)/2 pairs

in the original leaf node and create a new leaf node containing the rest of pairs

2. Let P be the new node and k the smallest value of the search key in P. Insert pair (k,p) in the

parent node of the dividing leaf – where p is the pointer to P

3. If the parent is full, this must be divided, propagating upward the division until a non-fully

occupied node is found. In the worst case, the root node is divided, case which increases the

depth of the tree.

 Dividing an internal node N when inserting a pair (k,p)

1. Create a temporary node M to store m+2 pointers and m+1 values; insert in M the pairs in N

and the pair (k,p) after ordering according to the keys

2. Copy P1,K1, …, K m/2,P m/2+1 from M back in N

3. Copy Pm/2+1+1,K m/2+1+1,…,Km+1,Pm+2 from M in a new node N’

4. Insert (K m/2+1, pointer_to_N’) in the parent of N

Updates in a B+-tree

Insertion: Example (1)

31

Insert values 14 and 16

Step1: search for 14

Step2: insert (P,14) in the leaf

Step 3: search for 16

Step 4: divide the leaf and

rearrange all (p,k) pairs

Step 5: insert (15,P) in the parent node

Updates in a B+-tree

Insertion: Example (2)

32

Insert values 8 and 10

Updates in a B+-tree

Deletions

33

1. Delete the record from the data file

2. If the corresponding pointer is part of a bucket, the entry in the bucket is deleted. Otherwise (also if the

bucket becomes empty) delete from the leaf node the pair (pointer, key_value)

3. If the leaf node remains with too few entries, and if there is room for these in a neighboring leaf, one leaf node

is deleted:

1. Insert all the entries in the left leaf node and delete the right one

2. Delete pair (Ki–1, Pi), where Pi is the pointer to the deleted leaf node in the parent. If necessary, propagate

upward the deletion. If the root node has only one pointer, it will be deleted.

4. Otherwise, if there is not enough room in neighboring leaves, the (pointer, key_value) pairs are redistributed

among tow leaves:

1. Such that the minimum is still satisfied

2. Update of the corresponding (key_value, pointer) pair in the parent node may be necessary

Updates in a B+-tree

Deletions: Example (1)

34

Delete values17 and 19

Updates in a B+-tree

Deletions: Example (2)

35

Delete values 5 and 7

B+-trees

Efficiency

36

 Search: at most log(m+1)/2(K) blocks transferred

 Because the leaf nodes are connected, interval queries are also efficiently solved

 Insertion, deletion: at most 2 log(m+1)/2(K) transferred blocks

B-trees

37

 Similar to B+-trees but allow only one occurrence of each key value

 The key values do not necessarily appear on the leaf level, necessitating one

extra pointer

(a) B+-tree node

(b) B-tree node

 Pointers Bi lead to records in the data file or buckets of pointers to the

records

B-tree index

Example*

38
* Avi Silberschatz Henry F. Korth S. Sudarshan. “Database System Concepts”.

McGraw-Hill Science/Engineering/Math; 6 edition (January 27, 2010)

B-tree indexes

Observations

39

 Advantages

 May require less nodes than the corresponding B+-tree

 It is possible to locate the sought record before reaching the leaf level

 Disadvantages

 Internal nodes are larger, resulting in trees with higher depth

 Insertions and deletions are more complicated -> implementation is more difficult

 It is not possible to scan a table based on the leaves

 Advantages do not weigh more than disadvantages: B+-trees are preferred over B-trees by DBMSs

Ordered indexes:

Multi-key indexes

40

Multi-key access

41

SELECT *

FROM students

WHERE county= 'Bihor' AND year > 2010;

 Several search strategies involving single-attribute indexes are possible:

 Using the index associated to the county search key

 Using the index associated to the year search key

 Using both indexes above followed by intersection

 What if only one of the conditions is satisfied by many records?

Multi-key indexes

42

 The search key is composed by more than one attribute

 Lexicographical order is used: (a1, a2) < (b1, b2) if

 a1 < b1or

 a1=b1 and a2 < b2

Ex. Consider the multi-key index (county, year)

Is it possible to efficiently solve both queries below?

a) where county= 'Bihor' AND year > 2010

b) where county> 'Bihor' AND year = 2010

Efficiency

43

 The order of the attributes in a multi-key index DOES matter!

 The efficiency depends on the selectivity of the attributes

k-d trees

44

 Generalization of the binary search tree:

 k= number of attributes of the search key

 Every level corresponds to one of the k attributes

 The sequence of levels represents iterations over the attribute set

 To obtain balanced trees, usually the median is used at the nodes

Hash file organization

Hash indexes

45

Hashing

46

 In a hash file organization of the data file, the records are grouped in buckets that are retrieved based

on the values of the search key using a hash function (the size of a bucket usually corresponds to a

memory block)

 A hash function is any function that can be used to map data of arbitrary size to fixed-size values.

 In indexing, a hash function h:K->B is a function from the set of values of the search key to the set of

addresses of the buckets

 Records with different values of the search key may be mapped to the same bucket

 The search involves looking sequentially in the bucket

Hash functions

47

 A “good hash function”:

 Distributes uniformly the values over the key space

 Minimizes collisions

 Typical hash functions use computations on the binary (internal) representation of the search key and

does not preserve locality (similar objects/keys do not receive identical or similar values)

 There may appear situations when the size of the bucket is too small to store all the mapped records

-> excess buckets are used

Hash file organization

Example

48

Use last_name as key:

Hash function: h:Dom(last_name)->{0,1,2,3} – computes the sum on the binary representation modulo 4

'Acatrinei‘:

'1000001 1100011 1100001 1110100 1110010 1101001 1101110 1100101 1101001'

h('Acatrinei') = 34%4 = 2.

Hash indexes

49

 Organizes the search keys with the associated pointers into a hash structure

Hash indexes

Operations

50

Search:

‘Sandu’:

01010011 01100001 01101110 01100100 01110101

h(‘Sandu’) =20%4=0 -> scan bucket 0

Insertion:

‘Ionescu’:

01001001 01101111 01101110 01100101 01110011 01100011

01110101

h(Ionescu)=32%4=0 -> insert first the record in the data file and

than the index entry in bucket 0

Deletion: compute the hash, scan the bucket, delete

Hash indexes

Efficiency

51

 When searching for a single value, in the absence of collisions, retrieving a value requires a single block

read

 For range search, the hash indexes are not efficient. WHY?

 In practice:

 Postgres and SQLServer implement hash indexes

 Oracle implements hash data file organization but not hash indexes

Dynamic Hash

52

 Function h maps values of the search key to a fix set of bucket addresses.

 If the data file increases in size, excess buckets are generated

 If the file decreases in size, unnecessary space is allocated

 Solutions:

 Periodic reorganization with a new hash functions (costly, necessitates interrupting the operations)

 The number of buckets is dynamically modified

 Extensible Hash: the hash function is dynamically modified

 Generates values in a large set, typically integers on 32 bytes

 At a certain moment only a prefix of the hash function is used (only the first i bits) and its length increases or

decreases as needed

Extensible Hash organization

General structure

53

i=2, i2 = i3 = i, i1 = i – 1

Extensible Hash

Use

54

 Every bucket j stores a value ij
 All the entries pointing to bucket j will have the same value on the first ij bits

 To search for a value with the search key Kj:

 compute h(Kj) = X

 Use only the first i bits of X, scan the address table and follow the pointer to the bucket

 To insert a record with search key Kj:

 Find bucket j as above

 If there is room in the bucket insert the record

 Otherwise divide the bucket and retry insertion

Extensible Hash

Dividing the bucket at insertion

55

To divide bucket j when inserting a new value Kj:

 If i > ij

1. Allocate a new bucket z and set ij = iz = (ij + 1)

2. Update the second half of the address table to point to bucket z

3. Remove records from j and reinsert them in j or z

4. Recompute the address of the bucket for Kj and proceed with insertion

1. If i = ij
1. If for some reason a limit for i is set and this is reached, use excess buckets

2. Otherwise

1. Increment i and double the size of the address table

2. Replace every entry in the table with two entries, both pointing to the same bucket

3. Recompute bucket address for Kj and proceed with insertion (now i > ij)

Extensible Hash

Deletion

56

 To delete a record

 Retrieve the bucket and delete the record from it

 If the bucket gets empty perform the necessary changes in the address table

 Buckets having the same value for ij and the same prefix ij –1are merged

 Decrease the size of the address table (i) if possible

Extensible hash

Example*

57

Initial hash structure, bucket size = 2

* Avi Silberschatz Henry F. Korth S. Sudarshan. “Database System Concepts”.

McGraw-Hill Science/Engineering/Math; 6 edition (January 27, 2010)

Extensible hash

Example

58

 After inserting one record Brighton and two records Downtown

* Avi Silberschatz Henry F. Korth S. Sudarshan. “Database System Concepts”.

McGraw-Hill Science/Engineering/Math; 6 edition (January 27, 2010)

Extensible hash

Example

59

 After inserting one record Mianus

* Avi Silberschatz Henry F. Korth S. Sudarshan. “Database System Concepts”.

McGraw-Hill Science/Engineering/Math; 6 edition (January 27, 2010)

Extensible hash

Example

60

 After inserting three records Perryridge

* Avi Silberschatz Henry F. Korth S. Sudarshan. “Database System Concepts”.

McGraw-Hill Science/Engineering/Math; 6 edition (January 27, 2010)

Extensible hash

Example

61

 After inserting records Redwood and Round Hill

* Avi Silberschatz Henry F. Korth S. Sudarshan. “Database System Concepts”.

McGraw-Hill Science/Engineering/Math; 6 edition (January 27, 2010)

Extensible hash

Efficiency

62

 Advantages

 Performance does not degrade with increasing file size

 Minimise space allocation

 Drawbacks

 The address table may become very large

 Solution: use a B+-tree to efficiently retrieve the necessary entry in the address table

 Modifying the size of the address table is costly

 Depending on the query type:

 Like static hashing, it is efficient when specifying a certain value, not for range queries

Bitmap indexes

63

Bitmap indexes

64

 Designed to efficiently deal with queries with several search keys

 Applicable for attributes taking a small number of distinct values

 The tuples of the relation are considered to be numbered

 Structure:

 For each value of the attribute a bit string of length equal to the number of records

 Value 1 means the record takes the value to which the bitstring is attached

Bitmap indexes

Observations

65

 Queries may be solved using logical operators:

 Intersection – AND

 Union – OR

 Complementariation – NOT

SELECT *

FROM students

WHERE county IN ('Arad', 'Cluj') AND year <> 2010;

 (Arad OR Cluj) AND NOT(2010)

 It is not necessary to access the data file

 Also useful when the query necessitates counting

 Efficient implementation:

 At deletion an existence bit string is used

 Bitmaps are packed into words (the word type) on 32 or 64 bits (the AND operator on a word – one CPU

instruction)

Defining indexes in SQL

66

Declaring indexes in SQL

67

 The standard does not regulate, but in practice DBMSs agreed on the same syntax

 Create:

create index <index-name> on <relation-name>
(<attribute-list>)

E.g.: create index c-index on students(county)

 Delete:

drop index <index-name>

 Most DBMSs allow specifying the index type

 Most DBMSs create by default indexes when specifying the unique constraint

 Sometimes indexes are also generated when specifying referential integrity constraints

Indexing in Oracle

68

 Indexes can be created on:

 Attributes and lists of attributes

 The result of a function over attributes

 Oracle offers support for B+-trees by default

 Bitmap indexes are created with the syntax

create bitmap index <index-name> on <relation-name> (<attribute-list>)

 Oracle does not offer support for hash indexes but implements hash file organization

Indexing in Oracle

When and how?

69

 It is recommended that index creation is performed after loading/inserting the data

in the table (but is possible to create an index at any moment)

 Choose the right columns:

 The columns have (mostly) unique values

 Selection filters a small number of tuples in a large table (high selectivity ~ 15%)

 The columns are used in a join

 Choose the appropriate index type:

 Columns have a few distinct values -> bitmap

 Range query -> B+trees

 Single-value queries are frequent: -> hash file organization

 Selection with functions -> indexes defined over functions

References

70

 Chapter 11 in Avi Silberschatz Henry F. Korth S. Sudarshan. “Database System Concepts”. McGraw-Hill

Science/Engineering/Math; 6 edition (January 27, 2010)

 Practice: execute script 12.1create and then the statements in 12.2indexes inspecting the execution

plans

